
A Formal Specification of Access Control
in Android

Samir Talegaon(B) and Ram Krishnan

University of Texas at San Antonio, San Antonio, USA
{samir.talegaon,ram.krishnan}@utsa.edu

Abstract. A formal specification of any access control system enables
deeper understanding of that system and facilitates performing security
analysis. In this paper, we provide a comprehensive formal specification
of the Android mobile operating system’s access control system, a widely
used mobile OS. Prior work is limited in scope, in addition recent devel-
opments in Android concerning dynamic runtime permissions require
rethinking of its formalization. Our formal specification includes two
parts, the User-Initiated Operations (UIOs) and Application-Initiated
Operations (AIOs), which are segregated based on the entity that ini-
tiates those operation. Formalizing ACiA allowed us to discover many
peculiar behaviors in Android’s access control system. In addition to
that, we discovered two significant issues with permissions in Android
which were reported to Google.

Keywords: Android · Permissions · Access control · Formal model

1 Introduction and Motivation

Android is a widely popular mobile OS; Android regulates access to its com-
ponents and end-user resources with a permission based mechanism. A formal
specification for access control in Android (AciA) facilitates a deeper under-
standing of the nature in which Android regulates app access to resources.Prior
work targeting such formalization of the permission mechanism exists, but is
limited in its scope since most of it is based on the older install time permission
system [7,10,12,13]. Hence, detailed analysis and testing needs to be conducted
to build this model, to enable a systematic review for security vulnerabilities.

Users install apps in Android which enable them to fully utilize the device
features; and, permission based access control in Android (ACiA) works to reg-
ulate app access to sensitive resources. Android contains a wide variety of soft-
ware resources such as access to the Internet, contacts on the phone, pictures
and videos etc., and hardware resources such as Bluetooth, NFC, WiFi, Cam-
era etc. The apps installed by the users require access to these resources for
achieving full functionality and they request it from the OS. The OS in turn
seeks user interaction to approve some of these requests and grant the necessary
permissions to the apps [4,11]; this is illustrated in Fig. 1.
c© Springer Nature Singapore Pte Ltd. 2020
S. K. Sahay et al. (Eds.): SKM 2019, CCIS 1186, pp. 101–125, 2020.
https://doi.org/10.1007/978-981-15-3817-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3817-9_7&domain=pdf
https://doi.org/10.1007/978-981-15-3817-9_7

102 S. Talegaon and R. Krishnan

Fig. 1. Permission-based access control in Android

Formalization of ACiA is a non trivial task, and one that has received limited
attention, apart from the fact that much of this work has limitations with respect
to the current ACiA, due to the major changes in ACiA with the introduction
of runtime permissions and non-holistic nature of the work. We believe that
the formal specification of Android obtained from documentation as well as the
source code has not been done comprehensively, that includes all the aspects
of ACiA such as User Initiated Operations (UIO) and Application Initiated
Operations (AIO). Our analysis also enables a holistic and systematic review of
ACiA security policies and facilitates the discovery of loopholes in ACiA.

Our Contribution: We present a formal specification of ACiA that enables its
analysis from the point of view of security. This model (ACiAα) sheds a light
on the internal access control structure of the Android OS with respect to apps,
permissions and uri permissions. Without such a model, finding and plugging
individual security loopholes in ACiA becomes too complex and may not yield
the results that can be obtained via a holistic approach. In order to be more
precise and thorough, we have divided our ACiAα formal specification into two
parts, based on the initiating entity for that operation; UIOs and AIOs, initiated
by users and apps respectively.

OUTLINE: In Sect. 2, we place our research amongst the current body of works
and Sect. 3, describes ACiA formal specification. In Sect. 4, we present anomalies
and quirks we discovered in ACiA that were revealed as a result of thorough
testing and Sect. 5, describes conclusion and future work with respect to ACiAα.
Finally, we end with Sect. 6 containing the references.

2 Related Work

ACiA has received some attention from prior works; a few such closely related
works are described in this section. Shin et al. [13] build a model of ACiA and is
one of the few works that come close to our work in modeling the ACiA, including
UIOs and AIOs. However, they do not distinguish between multiple competing
custom permission definitions, because Android permissions were designed dif-
ferently at that time. Also, owing to the early nature of this work, it does not
model dangerous runtime permissions nor does it include the uri-permissions
used to facilitate inter app data sharing. Fragkaki et al. [12] also model ACiA,

A Formal Specification of Access Control in Android 103

Fig. 2. Building blocks of the ACiA

but their work is centered largely around the uri-permission system. Android’s
UIOs are not discussed in the work including app installation, un-installation and
the vital issue about multiple competing custom permission definitions. Hence,
it is required to build a formal model of the ACiA with a holistic perspective,
to obtain a deeper understanding of permissions in Android.

Betarte et al. [8–10] present a state-based model of ACiA, which is impor-
tant owing to the analytical capabilities such a model can offer with respect to
security. They define a model state as 8-tuples that record the current state for
an Android device, which includes installed apps, permissions, runtime compo-
nents, temporary and permanently delegated data permissions. They proceed by
defining a valid state using 8 distinct conditions, including uniqueness of installed
apps, validity of a delegated uri permission which is true is app that receives such
a permission, is running, and, uniqueness of all resources on the device. Finally
they show three example actions which are the launching of a component, read-
ing of data by a runtime component from a content provider, and, delegation of a
temporary uri permission. However, their work does not mention the UIOs along
with the fact that apps from the same developer can define the same permis-
sions into distinct permission-groups and protection-levels. Bagheri et al. [5,6]
built a formal ACiA model, but, there is no distinction between defined custom
permissions and effectively defined custom permissions. They refer to a compete
model in the references, however, even in this model, the UIOs do not mention
this distinction. In summary, even though the above works formalize both UIO
and AIO operations of ACiA, they are limited in detail.

Tuncay et al. [14] identify that developers should always define custom per-
missions with the same particulars such as permission-group and protection-
level; but, the UIOs proposed by them do not differentiate between multiple
competing custom permission definitions. Apart from this, uri-permissions are
not included in their model, so this model is insufficient to obtain a holistic
understanding of ACiA.

104 S. Talegaon and R. Krishnan

To conclude, none of the works that model ACiA, satisfy our requirements for
capturing a holistic yet detailed model for the same. To begin with, only a few
of the works that model ACiA use a holistic approach like ours, while the rest of
them either only model the UIOs or the AIOs, but not both. Furthermore, even
the works that employ a holistic approach in building a model for ACiA, are
insufficiently detailed to provide a thorough understanding of the detailed struc-
ture of ACiA, to the level of granularity we deem necessary. This encompasses
all the aspects of Android permissions including detailed operations such as app
installation/un-installation, permission grants/revocation, inter app component
access and delegation of uri permissions which the most important ones. The
detailed ACiAα we built, helped us discover two flaws in Android’s permission
system which were reported to Google [1,3]. We were also notified by Google
that they fixed one of those flaws [1], and the future versions of Android will not
have that flaw.

3 Formal Specification of Access Control in Android

ACiAα was built by reading the developer/source code documentation [2,4],
reading the source code itself and verifying our findings via inter-app tests. The
ACiAα model is specified below.

In the normal course of action, the Android user downloads many apps from
the Google Play Store. App data such as app names, permissions, app compo-
nent names are stored at Google and on an Android device. The data stored by
Google is mimicked by Universal Sets, whereas, the data stored on an Android
device, is mimicked by Device Sets. To install the apps the OS uses many differ-
ent APIs which we summarize as APK Extractor Functions, and, as shown in
the Fig. 2, these functions assist in the installation procedure by extracting the
required data from the Universal sets. Upon successful installation, all the neces-
sary device entity sets and relations are updated as shown in Table 4 (InstallApp
operation). Similarly, to facilitate app uninstallation, the helper functions enable
us to extract data from the device sets and relations for their removal. Many
other operations take place during the normal course of working of an app, and,
this is portrayed by the UIOs and AIOs that mimic built-in methods such as
RequestPermission, GrantPermission, GrantUriPermission etc.

3.1 Building Blocks of ACiAα

ACiAα operations utilize certain element sets, functions and relations that are
listed in Tables 1, 2 and 3. Table 1 shows primary data sets from the Google Play
Store (Universal Entity Sets - column 1) and a generic Android device (Device
Entity Sets - column 2).

Universal Sets. The Universal Sets are designed to mimic the data structures
of the Google Play Store and begin with the letter “U”; they are populated by
Google along with app developers and are assumed to be immutable for the
purposes of this paper.

A Formal Specification of Access Control in Android 105

Table 1. ACiA entity sets

Universal entity sets Device entity sets

UAPPS APPS

UCOMPS COMPS

UAUTHORITIES AUTHORITIES

UPERMS PERMS

USIG -

UPGROUP PGROUP

UPROTLVL PROTLVL

- DATAPERMS

- URI

- OP

Table 2. APK extractor functions

getComps: UAPPS → 2UCOMPS

getOps: UCOMPS → 2OP

getAuthorities: UAPPS � 2UAUTHORITIES

getCompPerm: UCOMPS × OP � PERMS

appSign: UAPPS → USIG

defPerms: UAPPS � 2UPERMS

defPgroup: UAPPS � 2UPGROUP

defProtlvlPerm: UAPPS × UPERMS � UPROTLVL

defPgroupPerm: UAPPS × UPERMS � UPGROUP

wishList: UAPPS � 2UPERMS

Table 3. ACiA relations and convenience functions

APP COMPS ⊆ APPS × COMPS ownerApp: COMPS → APPS

appComps: APPS → 2COMPS

COMP PROTECT ⊆ COMPS × OP ×
PERMS

requiredPerm: COMPS × OP � PERMS

allowedOps: COMPS → 2OP

AUTH OWNER ⊆ APPS ×
AUTHORITIES

authoritiesOf: APPS → 2AUTHORITIES

PERMS DEF ⊆ APPS × PERMS ×
PGROUP × PROTLVL

defApps: PERMS → 2APPS

defPerms: APPS → 2PERMS

defPgroup: APPS × PERMS � PGROUP

defProtlvl: APPS × PERMS → PROTLVL

PERMS EFF ⊆ APPS × PERMS ×
PGROUP × PROTLVL

effApp: PERMS → APPS

effPerms: APPS → 2PERMS

effPgroup : PERMS � PGROUP

effProtlvl : PERMS → PROTLVL

DPERMS WISHED ⊆ APPS × PERMS wishDperms: APPS → 2PERMS

PERMS GRANTED ⊆ APPS × PERMS grantedPerms: APPS → 2PERMS

GRANTED DATAPERMS ⊆ APPS ×
URI × DATAPERMS

grantNature: APPS × URI × DATAPERMS →
{SemiPermanent,Temporary,NotGranted}
uriPrefixCheck: APPS × URI × DATAPERMS → B

Table 4. Helper functions

userApproval: APPS × PERMS → B

brReceivePerm: COMPS → PERMS

corrDataPerm: PERMS → 2URI×DATAPERMS

belongingAuthority: URI → AUTHORITIES

requestApproval: APPS × APPS × URI →2DATAPERMSb

grantApproval: APPS × APPS × URI ×2DATAPERMS → B

prefixMatch: APPS × URI × DATAPERMS → B

appAuthorized: APPS × URI × DATAPERMS → B

106 S. Talegaon and R. Krishnan

– UAPPS: the universal set of applications available in the app store (any app
store e.g.: Google Play store, Amazon app store).

– UCOMPS: the universal set of components for all the applications from the
app store.

– UAUTHORITIES: the universal set of authorities for all the content providers
that are defined by all the applications from the app store. An authority is
an identifier for data that is defined by a content provider.

– UPERMS: the universal set of permissions consisting of pre-defined system-
permissions and application-defined custom permissions from the app store.

– USIG: the universal set of application signatures from the app store.
– UPGROUP: the universal set of permission-groups for pre-defined system

permissions as well as application-defined custom permissions for all applica-
tions from the app store.

– UPROTLVL: the set of all pre-defined permission protection-levels on an
Android device. The protection-level of a permissions corresponds to the sig-
nificance of the information guarded by it and consists of a base protection-
level and additional protection-flags. For the purposes of this paper we only
consider the base protection-levels i.e.: normal, dangerous and signature.

Device Sets. The Device Sets are designed to mimic the data structures of a
generic Android device and are populated by the device itself in accordance with
pre-defined policies from Google.

– APPS: the set of all pre-installed system applications and user-installed cus-
tom applications on an Android device; this set includes the stock Android
system as well, defined as a single element. So, APPS ⊆ UAPPS for any
given Android device (realistically).

– COMPS: the set of all the components belonging to the pre-installed system
applications and user-installed custom applications on an Android device. So,
COMPS ⊆ UCOMPS on a given Android device.

– AUTHORITIES: the set of all authorities belonging to all applications
(pre-installed system applications and user-installed applications) that are
installed on an Android device.

– PERMS: the set of all application-defined custom permissions and pre-defined
system permissions on an Android device. Note that, PERMS ⊆ UPERMS
on a given Android device.

– PGROUP: the set of all application-defined custom permission-groups and
pre-defined system permission-groups on an Android device. Note that
UPGROUP ⊆ PGROUP on a given Android device.

– PROTLVL: the set of all protection levels present on the device which are
the same for any Android device. Note that, PROTLVL = UPROTLVL on
a given Android device.

– DATAPERMS: the set of all data-permissions that applications with con-
tent providers can grant to other applications, to provide permanent or
temporary access to their data. There are two types of data-permissions in
Android; base data-permissions and modifier data-permissions. We denote

A Formal Specification of Access Control in Android 107

the base data permissions as DATAPERMSb and the modifier data per-
missions as DATAPERMSm. So, DATAPERMSb = {dpread, dpwrite}
and DATAPERMSm = {mpersist, mprefix, none} and therefore, DAT-
APERMS = DATAPERMSb × DATAPERMSm = {(dpread, none),
(dpwrite, none), (dpread, mpersist), (dpread, mprefix), (dpwrite,
mpersist), (dpwrite, mprefix)} for a given Android device.

– URI: the set of all data addresses that applications with content providers can
define, which includes certain pre-defined addresses from system applications.

– OP: the set of all operations that may be performed on any Android com-
ponent. Note that the component types for Android are - Activity, Service,
Broadcast Receiver and Content Provider; and, this set is pre-populated by
Google. This means that any operations that may be performed on any com-
ponents installed on a given Android device have to be chosen from this
set. Examples of operations that can be performed on components include:
startActivity on an Activity, startService on a Service, sendBroadcast on a
Broadcast Receiver, and, create, read, update and delete (CRUD) operations
on a Content Provider (this is not an exhaustive list of operations).

APK Extractor Functions. Functions that retrieve information from an
application that is about to be installed on the device; evidently, the relations
maintained in the device are not useful for these functions. We call these func-
tions APK Extractor Functions. These are shown in Table 2.

– getComps, a function that extracts the set of components belonging to an
application from the universal set of components.

– getOps, a function that extracts the set of allowed operations for a given
component, based on the type of that component.

– getAuthorities, a partial function that extracts the set of authorities that
are defined by an application. An application can define multiple unique
authorities and no two authorities from any two applications can be the same.

– getCompPerm, a partial function that maps application components and oper-
ations they support, to the permissions that other applications are required to
posses, to perform these operations. To obtain the set of valid operations on
any given component, we use the function getOps on that component. Apart
from this, a component may not be protected by any permission, and in such a
case, the component can be freely accessed by any installed applications (the
decision of allowing inter-application component access for any application is
made by the developer of that application). If a component is protected by a
permission that is not defined on the given Android device, other applications
may not perform any operations on such a component (auto deny).

– appSign, a function that extracts the signature of an application from the
universal set of signatures. This function is used to match application signa-
tures in the pre-requisite condition for granting of signature permissions (i.e.:
permissions with the protection level - signature).

– defPerms, a function that extracts the custom-permissions that are defined
by an application, from the UPERMS. When any application gets installed,

108 S. Talegaon and R. Krishnan

it can define new permissions that are distinct from the pre-installed sys-
tem permissions and are used to regulate access to its components by other
installed applications.

– defPgroup, a function that extracts the custom permission groups that are
defined by an application, from the UPGROUP. When any application gets
installed, it can define new permission-groups that are distinct from the pre-
installed permission-groups and are used to mitigate the number of permission
prompts shown to the user (a permission prompt is an application asking for
certain permission).

– defProtlvlPerm, a function that extracts a protection level for a permis-
sion as defined by an application. Protection-level is defined for all permis-
sions by some applications, and different applications may define distinct
protection-levels for the same permission1. Note that, ∀ua ∈ UAPPS, ∀up
∈ UPERMS, ∀pl1 �= pl2 ∈ UPROTLVL. defProtlvlPerm(ua, up) = pl1 ⇒
defProtlvlPerm(ua, up) �= pl2.

– defPgroupPerm, a partial function that extracts the permission-group for
some permissions if defined by an application. Permission-group may be
defined for some permissions by some applications, and different applications
may define distinct permission-groups for the same permission (see footnote
1). Note that, ∀a ∈ UAPPS, ∀p ∈ UPERMS, ∀pg1 �= pg2 ∈ UPGROUP.
defPgroupPerm(ua, up) = pg1 ⇒ defPgroupPerm(ua, up) �= pg2.

– wishList, a function that extracts a set of permissions wished by an applica-
tion, from the UPERMS; this contains all those permissions that the appli-
cation may ever need in its lifetime.

Device Relations and Convenience Functions. The Device Relations are
derived from the Device Sets and portray the information stored by an Android
device to facilitate access control decisions. Any relation is always pre-defined for
built-in applications and system-permissions, but needs to be updated for user-
installed applications and application-defined custom-permissions. Convenience
functions query existing relations maintained on the device; evidently, these func-
tions fetch information based on applications that are already installed on the
device. These are listed in Table 3.

– APP COMPS, a one-to-many relation mapping application to it’s compo-
nents. Note that, ∀a1 �=a2 ∈ APPS, ∀c ∈ COMPS. (a1, c) ∈ APP COMPS
⇒ (a2, c) /∈ APP COMPS

1 (Two scenarios) Scenario A: Multiple applications from the same developer define
the same permission into distinct permission-levels and/or permission-groups; this is
a valid condition, but, only the first application’s definition of the permission counts
whereas the rest are ignored.
Scenario B: Multiple applications from different developers define the same per-
mission into distinct permission-levels and/or permission-groups; this condition is
invalid, since only one developer is allowed to define a new permission at any given
time. However, once that application gets uninstalled, other applications from dif-
ferent developers are able to define the same permission!

A Formal Specification of Access Control in Android 109

• ownerApp, a function mapping application component to their owner
application. Note that, a component can only belong to a single applica-
tion. So, ∀c ∈ COMPS. (ownerApp(c), c) ∈ APP COMPS.

• appComps, a function mapping an application to a set of its components.
This function is used while an application is being uninstalled, to get the
components of the application to be removed from the device. Formally,
appComps(a) = {c ∈ COMPS | (a, c) ∈ APP COMPS}.

– COMP PROTECT, a relation that maintains the permissions that are
required for operations to be performed on application components. Note
that, as it pertains to broadcasts, the sender as well as the receiver may require
permissions, however, this relation only maintains the permissions protecting
receiving components. To obtain permissions that are required by senders
of broadcasts (to be granted to receivers), a helper function brReceivePerm
defined in the following subsection can be used. So, ∀c ∈ COMPS, ∀op ∈
OP, ∀p1 �= p2 ∈ PERMS. (c, op, p1) ∈ COMP PROTECT ⇒ (

(c, op, p2) /∈
COMP PROTECT ∧ p1 = getCompPerm(c, op)

)

• requiredPerm, a function that gives the permission that an appli-
cation component is required to have, to initiate an operation with
another component. Note that two components from the same applica-
tion do not normally need these permissions. So, ∀c ∈ COMPS, ∀op ∈
OP.

(
c, op, requiredPerm(c, op)

) ∈ COMP PROTECT
• allowedOps, a function that gives the set of operations that can be per-

formed on a component. Since not all components support all the opera-
tions, allowedOps(c) = {op ∈ OP | (c, op, p) ∈ COMP PROTECT∧p ∈
PERMS}

– AUTH OWNER, a one-to-many relation that maps the authorities to
their owning applications on a given device. If an application tries to
re-define an already defined authority on an Android device, it will not
get installed on that device. Note that, ∀a1 �= a2 ∈ APPS, ∀auth ∈
AUTHORITIES. (a1, auth) ∈ AUTH OWNER ⇒ (

(a2, auth) /∈
AUTH OWNER ∧ auth ∈ getAuthorities(a)

)

• authoritiesOf, a function that give the authorities of a certain appli-
cation that is installed on an Android device. So, authoritiesOf(a) =
{auth ∈ AUTHORITIES | (a, auth) ∈ AUTH OWNER}

– PERMS DEF, a relation mapping user-installed applications, the custom-
permissions defined by these applications, the permission-group and the
protection-level of such permissions as defined by the respective applications.
Note that, ∀a ∈ APPS, ∀p ∈ PERMS, ∀pg1 �= pg2 ∈ PGROUP, ∀pl1 �=
pl2 ∈ PROTLVL. (a, p, pg1, pl1) ∈ PERMS DEF ⇒ (

(a, p, pg2, pl1) /∈
PERMS DEF ∧ (a, p, pg1, pl2) /∈ PERMS DEF

)

• defApps, a function that returns a set of applications that define a permis-
sion. When an application is uninstalled, this function is used to retrieve
the set of application that define a certain permissions, thus facilitat-
ing the decision of permission removal. So, defApps(p) = {a ∈ APPS |
(a, p, pg, pl) ∈ PERMS DEF}

110 S. Talegaon and R. Krishnan

• defPerms, a function that gives the set of permissions that are defined
by an installed application. This function is used while an application
is uninstalled from a device, to obtain the set of permissions defined
by that application so that they may be removed from the device. So,
defPerms(a) = {p ∈ PERMS | (a, p, pg, pl) ∈ PERMS DEF}

• defPgroup, a partial function that gives the permission-group for
a permission as defined by an installed application. Note that,
not all permissions that are defined by applications are categorized
into permission-groups. So, ∀a ∈ APPS, ∀p ∈ PERMS, ∀pg ∈
PGROUP. defPgroup(a, p) = pg ⇒ (

(a, p, pg, pl) ∈ PERMS DEF ∧
pl ∈ PROTLVL

)

• defProtlvl, a function that gives the protection-level for a permission as
defined by an installed application. When an application from a certain
developer is uninstalled from a device and another application from the
same developer is still installed on the device, this function is used to
transfer the permission definition to that of the remaining application.
So, ∀a ∈ APPS, ∀p ∈ PERMS, ∀pl ∈ PROTLVL. defProtlvl(a, p) =
pl ⇒ (

(a, p, pg, pl) ∈ PERMS DEF ∧ pg ∈ PGROUP
)

– PERMS EFF, a relation mapping all the pre-installed system applications
and user-installed custom applications on a device, the permissions defined by
them, the permission-groups and protection-levels of such permissions. In case
of multiple apps attempting to re-defined a permission on a device, Android
follows a first come first serve policy, thus only accepting the definition of
the first app that is installed. This relation reflects the effective definition
of permissions, as defined by system, system applications or user-installed
applications. Note that, ∀a ∈ APPS, ∀p1 �= p2 ∈ PERMS, ∀pg1 �= pg2 ∈
PGROUP, ∀pl1 �= pl2 ∈ PROTLVL. (a, p1, pg1, pl1) ∈ PERMS EFF ⇒
(a, p2, pg1, pl1) /∈ PERMS EFF ∧ (a, p1, pg2, pl1) /∈ PERMS EFF ∧
(a, p1, pg1, pl2) /∈ PERMS EFF

• effApp, a function that gives the pre-installed system application,
the Android OS, or the user-installed application that defined a per-
mission. This function is used during the signature matching process
required to be completed before any application is installed. So, ∀p ∈
PERMS. (effApp(p), p) ∈ PERMS EFF

• effPerms, a function that gives the set of permissions as effectively
defined by the system, a system application or a user-installed custom
application. This function is used while an application is uninstalled from
a device, to obtain the set of permissions defined by that application so
that they may be removed from the device. So, effPerms(a) = {p ∈
PERMS | (a, p, pg, pl) ∈ PERMS EFF ∧ pg ∈ PGROUP ∧ pl ∈
PROTLVL}

• effPgroup, a function that maps a permission to its permission-
group. This function is used when making access control decisions to
auto grant certain requested dangerous permissions. Note that, ∀p ∈
PERMS. effPgroup(p) = pg ⇒ (

(a, p, pg, pl) ∈ PERMS EFF ∧ pg ∈
PGROUP ∧ pl ∈ PROTLVL

)

A Formal Specification of Access Control in Android 111

• effProtlvl, a function mapping a permission to its protection level
on an Android device. This function is used to obtain permission
protection-levels used during permission granting process. Note that, ∀p ∈
PERMS. effProtlvl(p) = pl ⇒ (

a, p, pg, pl) ∈ PERMS EFF ∧ pg ∈
PGROUP ∧ pl ∈ PROTLVL

)

– DPERMS WISHED, a many-to-many relation mapping applications to the
dangerous permissions requested by them in the manifest. Since normal and
signature permission grants happen at install time, only dangerous permis-
sions are a part of this relation. Note that, ∀a ∈ APPS, ∀p ∈ PERMS.
(a, p) ∈ DPERMS WISHED ⇒ p ∈ wishList(a) ∧ effProtlvl(p) =
dangerous

• wishDperms, the mapping of an application to a set of dangerous permis-
sions requested by it in the manifest. Formally, wishDperms(a) = {p ∈
PERMS | (a, p) ∈ DPERMS WISHED}.

– PERMS GRANTED, a many-to-many relation mapping applications to the
permissions granted to them. Note that, ∀a ∈ APPS,∀p ∈ PERMS. (a, p) ∈
PERMS GRANTED ⇒ p ∈ wishList(a)

• grantedPerms, the mapping of an application to the a set of permissions
granted to it. Formally, grantedPerms(a) = { p ∈ PERMS | (a, p) ∈
PERMS GRANTED}.

– GRANTED DATAPERMS, a relation mapping applications to the data per-
missions granted to them. Data permissions are granted to applications by
the applications that own that data permission.

• grantNature, a function that gives the nature of a data permission grant
to an application. Such a nature can be Permanent, Temporary and Not
Granted (when the data permission was not granted to that applica-
tion); a permanent permission grant survives device restarts whereas
a temporary permission grant is revoked once the application is shut
down. So, ∀a ∈ APPS, ∀uri ∈ URI, ∀dpb ∈ DATAPERMSb, ∀dpm ∈
DATAPERMSm, ∀dp ∈ DATAPERMS.
grantNature(a, uri, dp) = SemiPermanent ⇒ (

dpm =
mpersist ∧ (a, uri, dp) ∈ GRANTED DATAPERMS

) ∨
grantNature(a, uri, dp) = Temporary ⇒ (

dpm = ∅ ∧ (a, uri, dp) ∈
GRANTED DATAPERMS

) ∨
grantNature(a, uri, dp) = NotGranted ⇒ (a, uri, dp)
/∈ GRANTED DATAPERMS

• uriPrefixCheck, a function that checks the data-permission for an appli-
cation against a prefix match given by the data-permission modifier
mprefix. Since data-permissions can be granted on a broad scale, this
modifier makes it possible for the application to receive access to all
the sub-URIs that begin with the specific URI that has been granted.
For example, if any data-permission is granted consisting of the mper-
sist modifier for a URI to an application such as content://abc.xyz/foo,

112 S. Talegaon and R. Krishnan

then, that application receives access to all the URIs that are con-
tained in the granted URI such as content://abc.xyz/foo/bar or con-
tent://abc.xyz/foo/bar/1 and so on. So, ∀a ∈ APPS, ∀uri ∈ URI, ∀dpb ∈
DATAPERMSb, ∀dpm ∈ DATAPERMSm, ∀dp = (dpb, dpm) ∈
DATAPERMS. uriPrefixCheck(a, uri, dp) = T ⇒ (

dpm = mprefix ∧
prefixMatch(a, uri, dp)

)

Helper Functions. The Helper functions facilitate access control decisions
by extracting data from the Android device and abstracting away complicated
details for the Android device without compromising details about the Android
permission model. These are listed in Table 4.

– userApproval, a function that gives the user’s choice on whether to grant a
permission for an application.

– brReceivePerm, a function that gives a permission that is required to be
possesed by an application component in order to receive broadcasts from
this component. Note that broadcast receivers from the same application do
not need this permission.

– corrDataPerm, a function that obtains the correlated data address and data
permission for a system level permission.

– belongingAuthority, a function that obtains the authority to which the
given URI belongs. At any given time a URI can belong to only a single
authority.

– requestApproval, an application-choice function that provides the data-
permissions for the URIs that are requesting by one application and
granted by the other application; only if conditions mentioned below are
met, otherwise it returns a null set. Note that, ∀a2 �= a1 ∈ APPS, ∀uri
∈ URI, ∀dp ∈ DATAPERMS. requestApproval(a2, a1, uri) �= ∅ ⇒∧

dp ∈ requestApproval(a1, a1, uri)

appAuthorized(a2, uri, dp)

– grantApproval, an application-choice boolean function that provides the
data-permissions for the URIs that are chosen to be delegated by one appli-
cation to another ; only if conditions mentioned below are met, otherwise
it returns a null set. Note that, ∀a1 �= a2 ∈ APPS, ∀uri ∈ URI,∀dp ∈ DATA
PERMS. grantApproval(a1, a2, uri) = T ⇒ ∧

dp ∈ grantApproval(a1, a2, uri)

appAuthorized(a2, uri, dp)
– prefixMatch, a boolean function that matches an application, a uri and a

data-permission to one of the mprefix data-permissions using the relation
GRANTED DATAPERMS.

– appAuthorized, a boolean function to check if an application has a cer-
tain data-permission with respect to the provided URI. So, ∀a ∈ APPS,
∀uri ∈ URI, ∀dp ∈ DATAPERMS. appAuthorized(a, uri, dp) ⇒ (a, uri,
dp) ∈ GRANTED DATAPERMS ∨ ownerOf

(
belongingAuthority(uri)

)

= a ∨ ∃p ∈ grantedPerms(a). (uri, dp) ∈ corrDataPerm(p) ∨
uriPrefixCheck(a, uri, dp)

A Formal Specification of Access Control in Android 113

Understanding the ACiAαoperations

– Updates on Administrative operations are assumed to be in order, this means
that they need to be executed in the order in which they are listed.

– The universal and on device sets are the building blocks of the relations, how-
ever, in this model, the sets and the relations need to be updated individually.
This means that when a relation is constructed from two sets (for example),
updating the sets will not impact the relation in any way.

3.2 User Initiated Operations

ACiAα - UIOs are initiated by the user or require their approval before they
can be executed. Note that certain special apps that are signed with Google’s
or the platform signature are exempt from this requirement, since they have
access to a broader range of “system only” permissions that may enable them to
perform these operations without user intervention. Also to be noted that only
the most important updates are discussed in this section, the detailed updates
are available on Table 5. For each operation, the updates are assumed to be
executed in-order.

– AddApp: This operation resembles the user clicking on “install” button on
the Google Play Store, and upon successful execution, the requested app is
installed on the device. It is required, for app installation to proceed, that
any custom permission definitions either be unique or in case of multiple such
definitions, that they are all defined by apps signed with the same certificate.

– DeleteApp: This operation resembles a user un-installing an app from the
Settings application. For this operation to proceed there are no conditions
that need to be satisfied.

– GrantDangerPerm/GrantDangerPgroup: These operations resemble
the user granting a dangerous permission/permission-group to an app via
the Settings app; and, the execution of this operation result in an app receiv-
ing a dangerous permission/permission-group respectively. It is required for
the app to have requested atleast 1 such dangerous permission from the same
permission-group in the manifest.

– RevokeDangerPerm/RevokeDangerPgroup: These operations resemble
the user revoking a dangerous permission/permission-group from an app
via the Settings app; and, their execution results in an app’s dangerous
permission/permission-group getting revoked. It is required that the appli-
cation be granted to said permission/permission-group prior to execution of
these operations.

114 S. Talegaon and R. Krishnan

3.3 Application Initiated Operations

The AIOs are initiated by the apps when attempting to perform several tasks
such as requesting a permission from the user, granting a uri permission to
another app, revoking a uri permission from all apps etc. With the exception of
the RequestPerm operation, these operations do not require user interaction
and can be completed by the Android OS.

– RequestPerm: This operation resembles an app requesting a dangerous sys-
tem permission from the Android OS. Such a permission request is successful
only if the user grants it to the app, or, the app requesting it already has

Table 5. ACiAα User Initiated Operations

(continued)

A Formal Specification of Access Control in Android 115

Table 5. (continued)

another permission from the same permission group. If successful, the app is
granted the requested dangerous permission.

– RequestDataPerm: This operation denotes the uri-permission requests by
apps. Such a request may be granted by apps only if they have the required
access. Once this request is successful, the app requesting it is granted the
uri-permission.

– GrantDataPerm: This operation resembles the uri-permission delegation
by apps; and, it only succeeds if the app trying to grant the permissions has
access to do so.

– RevokeDataPerm: This operation resembles the revocation of uri-
permission from an installed app. Applications can revoke uri-permissions
from other apps only if they have been granted such a permission via the
manifest, or, is the owner app for that uri.

– RevokeGlobalDataPerm: This operation is similar to the RevokeDat-
aPerm except that it revokes the uri-permissions from all applications on
the device. Applications that receive access to the content provider may only
invoke this function successfully.

– CheckDataAccess: This operation checks if a particular app has access to
a uri. Uri permissions are delegated to apps by other app possessing those
permissions.

116 S. Talegaon and R. Krishnan

Table 6. ACiAα Application Initiated Operations

– CheckAccess: This operation resembles a component attempting to do an
operation on another component; components may belong to the same or
distinct apps. This operation can succeed if the app attempting to perform
it has been granted the required permissions.

– AppShutdown: This operation resembles an app shutting down, so all the
temporary uri-permissions granted to it are revoked unless they are persisted.

A Formal Specification of Access Control in Android 117

4 Experimental Setup and Observations

After we extract the model for ACiA using source code and developer docu-
mentation, testing was done via carefully designed inter app tests. These tests
enabled the discovery of the flaws that are stated in this section, apart from help-
ing us understand the intricate details of operations such as application instal-
lation, uninstallation, permission grants and revocation etc. A brief overview on
the testing methodology is explained in the section below.

Rationale for Testing. Mathematical models mitigate ambiguity in access
control; documentation and source codes can be open to interpretation. Differ-
ences in interpretation leads to a plunge in accuracy of stated operations, which
in turn leads to inaccurate predictions based on that interpretation. Since our
entire model for ACiA depends on reading the source code and documentation,
testing was performed to ensure that our model is in line with the behavior of
the Android OS and that of Android apps. Apart from this, we made several
predictions based on the model, and then verified them using these tests, and it
is this very methodical procedure that enabled us to discover flaws in the design
of ACiA that were communicated to Google via its issue-tracker.

4.1 Experimental Setup

A simple three app base testing environment was designed, which was adapted
for each individual test. The apps used for these tests were dummy apps with
two activities and one service component. According to need, the apps were
programmed to define a new permission using one of the available protection
levels, or, into a hitherto undefined permission group.

Test Parameters. A total of four test parameters (TP) are considered (see
Table 7) which include installation procedure for an app, uninstallation pro-
cedure for an all, installation sequence for multiple apps and uninstallation
sequence for multiple apps.

For brevity, we demonstrate a few simple tests that we conducted to verify
our findings using test apps as follows.

1. Verifying authorization requirements for AddApp operation. The
AddApp operation mimics the app installation procedure in Android, and
several checks are required to pass before the installation can proceed.

Checks found via the source code and documentation.

(a) If the app being installed defines a new permission, it is required that such
a permission be unique and is not already defined on the device.

(b) In the case it is already defined, the app must come from the same developer
as the one that defined the permission; this means their signatures must
match.

(c) If the app being installed defines a new authority for a content provider,
this authority must be unique.

118 S. Talegaon and R. Krishnan

Table 7. Test parameters used for ACiAα model evaluation

TP1a Install Procedure
e.g.: $adb push and then use GUI for installation, or
$adb uninstall

TP2 Uninstall Procedure
e.g.: $adb uninstall, or
Use GUI for uninstallation

TP3 Install order
e.g.: install App1, App2, App3; or
install App2, App1, App3; or
install App3, App2, App1

TP4 Uninstall order
e.g.: uninstall App3, App2, App1; or
uninstall App1, App2, App3; or
uninstall App2, App1, App3

aTP: Test Parameter

Verification Methodology. For this test, we designed three test apps that each
define the same permission, however, two are signed with the same certificate,
whereas the third is signed with a different certificate. Upon attempting instal-
lation we encountered the following.

Case for defining new permission (see Fig. 3): Apps 1 and 2 could be installed
even though they re-defined the same permission, however, App3’s installa-
tion could not proceed since it was signed with a certificate from a different
developer.
Case for defining new authority (see Fig. 4): Apps 1 and 3 could be installed
since they defined a unique authority, however, App 2’s installation could not
proceed since it attempted to re-define an authority that already existed on
the device.

App1
Certificate1

App2
Certificate1

App3
Certificate2

Install Policy

def(p1)

def(p1)

def(p1)
App1 defines p1

Android Device

AddApp(App1)
AddApp(App2)
AddApp(App3)

Fig. 3. App installation authorization requirement - new permission definition

A Formal Specification of Access Control in Android 119

App1
Certificate1

App2
Certificate1

App3
Certificate2

Install Policy

def(Authority X)

def(Authority Y)

def(Authority X)

App 1 defines
authority X.

App3 defines
authority Y.

Android Device

AddApp(App1)
AddApp(App2)
AddApp(App3)

Fig. 4. App installation authorization requirement - unique authority

2. Check whether permission definitions were changed in accordance
to the apps that were present on a device. The 3 above mentioned apps
were designed to define a single permission, but into 3 distinct permission
groups i.e.: pgroup1, pgroup2 and pgroup3. Upon installation of app1, the
permission p1 was defined on the device into the permission-group “pgroup1”;
following this, apps 2 and 3 were installed with no change in p1’s permission-
group (expected result). However, after app1 was uninstalled using the GUI
uninstallation method, the permission definition of p1 changed randomly to
“pgroup2” or “pgroup3”; this behavior was replicated using a combination of
distinct sequences for TP3 and TP4 and each test yielded the same result.
This meant that Android was randomly assigning permission definitions to
apps, when the initial app defining such a permission was uninstalled (this
means that a random app’s definition of the permission would be enforced
upon app1’s uninstallation; once enforced, such a definition stays until that
app gets uninstalled and so on). It is to be noted that this issue occurs
during the GUI uninstallation method, and was not observed when apps
were removed using the command line (something which only developers use
anyway). This makes the issue more relevant, since users normally uninstall
apps using the GUI and not the command line tools.

4.2 Observations from ACiA Acquired via Testing the ACiAα

Model

Our analysis of ACiAα yields some interesting and peculiar observations; and,
after a thorough review of the same, we derived the rationale behind these obser-
vations and make predictions based on them. Testing these predictions yield a
number of potential flaws in ACiA, which were reported to Google [1,3], and,
Google has said that [1] has been fixed and will be available in the future version
of Android. We also present our rationales for these anomalies, wherever neces-
sary. The model building phase for ACiAα is quite complex due to the lengthy
nature of Android’s source code. Every important observation was verified using
test-apps, and the final model is designed to capture all the important aspects

120 S. Talegaon and R. Krishnan

Fig. 5. Anomaly in Android custom permissions

of ACiA. Below we note a few such important observations and the related
operations where they were encountered.

1. Undefined behavior in case of competing custom permission defini-
tions. Android allows multiple definitions of the same permission (from apps
signed with the same certificate) to co-exist on a device. The effective defini-
tion for such a permission is taken from the first app that defines it; any sub-
sequent definitions of the same permission are ignored by Android. This can
cause issues when that app that defined the permission is un-installed, since
there is no order with which Android changes the definition of the permission,
hence, the permission definition randomly jumps from the un-installed app,
to any other app that defined the permission.

Explanation Using ACiAα Model: This issue was encountered while testing
ACiA, based on ACiAα model and can be demonstrated via the Authoriza-
tion Requirement of the AddApp operation (see Table 5), the PERMS EFF
updates in the AddApp and DeleteApp operations. While an app (App1)
is being installed (see Fig. 5), Android checks to see if the custom permis-
sion defined by the app (p1) does not already exist on the device; when this
check passes, the app gets installed (assume it passes). Then the relation
PERMS EFF gets updated to indicate App1 effectively defined the permis-
sion p1. Upon installing two additional apps (App2 and App3) that also
define the same permission and are signed with the same certificate as App1,
Android will ignore their definition of the permission p1; this is in line with
how Android should work. Upon un-installation of App1, however, we can see
that, in the operation DeleteApp, the relation PERMS EFF gets modified

A Formal Specification of Access Control in Android 121

after choosing a random permission from the set of permissions defined by
any other app - in this case either App2 or App3.

Rationale: This random jump between permission definitions upon app un-
installation is an unwanted behavior; and, may occur despite the fact that
developers are expected to stick to the same definitions for any custom-
permissions they define, since this is not enforced by Google.

Proposed Resolution: We believe that Android should remember the order of
app installations and modify permission definitions in-order rather than take
a random approach to the same; alternatively, keeping in line with highest
protection level first, the permission definition that puts the permission into
the higher protection level should be utilized by Android. This will enable
developers to definitively know, which definition of a custom permission is
active.

2. Normal permissions are never re-granted after app un-installation.
According to Android, normal and signature permissions are defined to be
install-time permissions by Android, so, when multiple apps define the same
permission, app un-installation results in any new normal permissions to be
not granted to apps. This is not the case with signature permissions, as they
are automatically re-granted by Android.

Explanation Using ACiAα Model: Consider two apps App1 and App2 that
define a permission p1, where App1 defines this permission to be in the
normal protection-level whereas App2 defines the same permission in the
dangerous protection-level; since App1 got installed first, according to
PERMS EFF from the operation AddApp (see Table 5), its definition is
effective i.e.: protection-level of p1 is normal. If, at this step, App1 is un-
installed, App2’s definition of the permission becomes active, this functions
properly according to the model. However, App2 is not granted this per-
mission nor do any other apps that may have requested this permission in
their manifests prior to App1’s un-install. This is not true for signature
permissions that are granted upon signature match, nor does it apply to
dangerous permissions that are requested at run-time by apps. To top it all,
in the event that a developer defines a custom-permission without specifying
any protection-level to it, the default protection-level applies that is normal,
this further exacerbates the issue mentioned above and is particularly difficult
for new developers. We have reported this issue to Google [1].

Rationale: We believe that this is an unwanted behavior, and the reason is
that if a signature permissions are being granted in the above mentioned
scenario, normal permissions should be granted as well since both these
permissions are listed as install-time-granted permissions.

Proposed Resolution: We believe that Android should re-grant such converted
normal permissions in the same way it re-grants the signature permissions,
so that, the behavior of permissions can be correctly predicted by developers.

122 S. Talegaon and R. Krishnan

3. Apps can re-grant temporary uri permissions to themselves perma-
nently. Android enables apps to share their data via content providers, tem-
porarily (using intents with uri permissions), or semi-permanently (using the
grantUriPermissions) method. Apart from this, apps can protect the entire
content providers with a single (single permission for read and write) or dou-
ble (one permission for read and one for write) permissions. When an app
receives a temporary uri permission, it can even grant those permissions to
any other apps temporarily or semi-permanently. This is clearly a flaw as
no app can control this style of chain uri permission grants; this flaw is not
exactly new and was discovered a few years ago [12].

Explanation Using ACiAα Model: We can see from Table 6, the GrantDat-
aPerm operation does not keep a record of the type of uri-permission grant
(temporary or permanent). The authorization requirement for this operation
is a simple boolean helper function from Table 4 - grantApproval. This is in
line with how Android works, and, once the app shuts down, as can be seen
from the operation AppShutdown, merely the temporarily granted permis-
sions are revoked. The relation GRANTED DATAPERMS (from Table 3) is
responsible for keeping track of the types of uri-permission grants.

4. Custom permission names are not enforced using the reverse
domain style. Although Google recommends developers to use the reverse
domain style naming convention for defining custom-permissions, no formal
regulation is done by Google. This can lead to unwanted behavior for the
end-user when a new app fails to install, as it attempts to re-define a per-
mission that already exists on the device (if this new app is from a different
developer), confusing the user.

Rationale: Google’s attempt at providing developers free reign over custom-
permissions may backfire and cause an unaware user to be unable to install
required apps. This issue should be rectified by Google by regulating custom-
permission names (Fig. 6).

5. Complex custom permission behavior upon app un-installation.
During app un-installation, extensive testing was done to ensure that we
captured an accurate behavior for Android. Care was taken while removing
permission definitions, since only if there are no other apps defining the same
permission, is that permission removed from the system. For this test case
we constructed 3 test apps and performed worst case testing with respect to
permission definitions and found Issue #2 described above. This is a grave
issue since the documentation states that all normal permissions are always
granted when their apps are installed on the device.

Explanation Using ACiAα Model: From Table 5, we can see that the
DeleteApp operation that models the app un-installation procedure is quite
complex. Android allows apps to define custom permissions, so, after the un-
installation of such apps, Android removes any custom permissions effectively
defined by that app. However, in the event that another app with the same
certificate defines the permissions to be removed, Android simply switches

A Formal Specification of Access Control in Android 123

Fig. 6. Drawback of not enforcing custom permission names

the permission definition and keeps that permission from getting mistakenly
deleted. Any and all updates to the permissions protecting app components,
granted permissions or dangerous permissions requested by apps need to be
postponed until after all such custom permission definitions effectively defined
by the app being removed, have been dealt with; otherwise these permission
definitions would be inconsistent with their expected behavior.

Rationale: This is because Android performs a wide array of book-keeping
operations upon the un-installation of any apps, this is done to maintain
consistency across the defined custom permissions and effective custom per-
missions that exist on the device, the permissions that are granted to apps
and the dangerous permissions requested by apps to name a few.

5 Conclusion

We have built a model for ACiA and present it in brief, in this paper. Quite a
few peculiar behaviors come to light as we delve deeper into Android, some of
which we were able to discover and present in this work as well. Future work
includes formal analysis to answer many interesting questions such as.

– Given an app and a system permission it does not posses, is there a way in
which that app receives that permission? Which ways?

– Given an app and a system permission it does posses, is there a way in which
that permission is revoked from this app? Which ways?

– Given an app and it’s parameters, can this app be installed on an Android
device? Which ways?

– Given an app and a content provider path, is there a way this app can receive
a uri permission to that path? If yes, how many ways exist for the app to
receive such a permission?

124 S. Talegaon and R. Krishnan

• Can the app access that data stored by that content provider without
obtaining any uri-permission to that path? If yes, which are those?

– Given two apps, X and Y, where Y protects its content provider with a uri
permission, is there a way for app X to access Y’s content provider without
obtaining the said uri permission? If yes, which are those?

– Given a permission defined into a permission-group, is there a way its
permission-group can be changed on the device? If yes, how many ways can
this be achieved? Similarly, is there a way to change its protection level? If
yes, how which are those?

– Given an app and a component, can the component be associated with more
than one app?

Acknowledgements. This work is partially supported by DoD ARO Grant W911NF-
15-1-0518, NSF CREST Grant HRD-1736209 and NSF CAREER Grant CNS-1553696.

References

1. Android permission protection level “normal” are never re-granted! (2019). https://
issuetracker.google.com/issues/129029397. Accessed 21 Mar 2019

2. Android Permissions—Android Open Source Project (2019). https://source.
android.com/devices/tech/config. Accessed 17 June 2019

3. Issue about Android’s permission to permission-group mapping (2019). https://
issuetracker.google.com/issues/128888710. Accessed 21 Mar 2019

4. Request App Permissions—Android Developers (2019). https://developer.android.
com/training/permissions/requesting/. Accessed 12 Mar 2019

5. Bagheri, H., Kang, E., Malek, S., Jackson, D.: Detection of design flaws in the
android permission protocol through bounded verification. In: Bjørner, N., de Boer,
F. (eds.) FM 2015. LNCS, vol. 9109, pp. 73–89. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19249-9 6

6. Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for detection of
security flaws in the android permission system. Formal Aspects Computi. 30(5),
525–544 (2018)

7. Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: COVERT: compositional analysis
of android inter-app permission leakage. IEEE Trans. Softw. Eng. 41(9), 866–886
(2015)

8. Betarte, G., Campo, J., Cristiá, M., Gorostiaga, F., Luna, C., Sanz, C.: Towards
formal model-based analysis and testing of android’s security mechanisms. In: 2017
XLIII Latin American Computer Conference (CLEI), pp. 1–10. IEEE (2017)

9. Betarte, G., Campo, J., Luna, C., Romano, A.: Formal analysis of android’s
permission-based security model 1. Sci. Ann. Comput. Sci. 26(1), 27–68 (2016)

10. Betarte, G., Campo, J.D., Luna, C., Romano, A.: Verifying android’s permission
model. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS,
vol. 9399, pp. 485–504. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25150-9 28

11. Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE
Secur. Priv. 7(1), 50–57 (2009)

https://issuetracker.google.com/issues/129029397
https://issuetracker.google.com/issues/129029397
https://source.android.com/devices/tech/config
https://source.android.com/devices/tech/config
https://issuetracker.google.com/issues/128888710
https://issuetracker.google.com/issues/128888710
https://developer.android.com/training/permissions/requesting/
https://developer.android.com/training/permissions/requesting/
https://doi.org/10.1007/978-3-319-19249-9_6
https://doi.org/10.1007/978-3-319-19249-9_6
https://doi.org/10.1007/978-3-319-25150-9_28
https://doi.org/10.1007/978-3-319-25150-9_28

A Formal Specification of Access Control in Android 125

12. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing android’s
permission system. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33167-1 1

13. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze the
permission authorization and enforcement in the android framework. In: Proceed-
ings - SocialCom 2010: 2nd IEEE International Conference on Social Computing,
PASSAT 2010: 2nd IEEE International Conference on Privacy, Security, Risk and
Trust, pp. 944–951 (2010)

14. Tuncay, G.S., Demetriou, S., Ganju, K., Gunter, C.A.: Resolving the predicament
of android custom permissions. In: Proceedings of the 2018 Network and Dis-
tributed System Security Symposium. Internet Society, Reston (2018)

https://doi.org/10.1007/978-3-642-33167-1_1
https://doi.org/10.1007/978-3-642-33167-1_1

	A Formal Specification of Access Control in Android
	1 Introduction and Motivation
	2 Related Work
	3 Formal Specification of Access Control in Android
	3.1 Building Blocks of ACiA
	3.2 User Initiated Operations
	3.3 Application Initiated Operations

	4 Experimental Setup and Observations
	4.1 Experimental Setup
	4.2 Observations from ACiA Acquired via Testing the ACiA Model

	5 Conclusion
	References

